Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway
نویسندگان
چکیده
Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro Importantly, Jag1 overexpression improves diabetic wound healing in vivo These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound.
منابع مشابه
Notch1 Signaling Regulates Wound Healing via Changing the Characteristics of Epidermal Stem Cells
During wound healing and reconstruction, epidermal stem cells (ESCs) migrate to the wound site and activate to repair the damaged epithelium. Moreover, there exist complicate signaling pathways to regulate wound regeneration including Notch signaling. The Notch signaling pathway is a regulator of epidermal differentiation, which may be an important mediator of wound regeneration that participat...
متن کاملExpression of β-catenin and cyclin D1 in epidermal stem cells of diabetic rats.
The healing of diabetic wounds represents a formidable clinical challenge, and the molecular mechanisms involved in diabetic wound healing are far from clear. In this study, we investigated the expression of β-catenin and cyclin D1 in the epidermal stem cells (ESCs) of diabetic rats, and explored whether the reduction of β-catenin and its downstream target in ESCs, cyclin D1, lead to poor wound...
متن کاملNotch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing
BACKGROUND Epidermal homeostasis involves the monitoring of continuous proliferative and differentiative processes as keratinocytes migrate from the basal layer to the skin surface. Recently, differentiation of epidermal stem cells was shown to be promoted by the Notch pathway. This pathway is characterised by cell-cell interactions between transmembrane proteins and was first implicated in lat...
متن کاملThe effects of umbilical cord Wharton jelly derived mesenchymal stem cells injection on diabetic wound healing in male rats
Background: The number of patients suffering from diabetic ulcers has been increased in recent years and the current therapies have faced failure. This study aimed to investigate the effects of Wharton’s jelly stem cells (WJMSCs) on the diabetic wound in an animal mode. Methods: During this laboratory experimental study carried out in Skin and Stem Cells Research Center from March 2021 to Nove...
متن کاملNitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling
The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging an...
متن کامل